12 第1页 | 共2 页下一页
返回列表 发新帖
查看: 3545|回复: 10
打印 上一主题 下一主题

[其它] Interactive Large-scale Image Editing using Operator Reduction

[复制链接]

797

主题

1

听众

1万

积分

资深设计师

Rank: 7Rank: 7Rank: 7

纳金币
5568
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

跳转到指定楼层
楼主
发表于 2011-12-29 09:03:45 |只看该作者 |倒序浏览
Figure 1: Overview of the editing system. Red rectangles are editing

operators. Blue rectangles are visible regions in different zoom

levels and view points.

With advent of advances in digital imaging technology, large-scale

high-resolution images become commonplace these days. Automated

digital cameras or scientific ins***ments can produce tens of

millions pixel images at interactive rates, and modern photo editing

software can stitch such high-resolution images to create much

larger-scale panoramic images with minimal user efforts. Those

large-scale images convey rich information of objects and scenes by

providing both large field-of-view when zoomed out and extremely

fine details when zoomed in, which is not available in normal-sized

images. In addition, such high-resolution imaging is becoming an

important research tool for scientific discoveries [Jeong et al. 2009].

In this poster, we introduce our on-going work on developing acceleration

techniques for interactive editing of large images. Our

method is inspired by the previous work [Jeong et al. 2011]. The

major limitations of [Jeong et al. 2011] is that the computational

complexity depends on the number of overlapping editing operators,

and some editing operators, e.g., push-pull blending or stitching,

still depend on the local multi-resolution data hierarchy for fast

computation. To address these problems, we propose a novel operator

reduction technique that can reduce multiple editing operators

to a single operator, using the domain subdivision method with a

GPU-friendly image editing pipeline.

Editing System Overview In our system, the input image, editing

operators, and the current visible region are defined as axisaligned

rectangles, i.e., 2D bounding boxes (Fig 1). The size, location,

and scale (i.e., level) of the editing operator is defined when it

is created. If the user changes the view point, e.g., zooming or panning,

then the location and the size of the viewing bounding box

is changed accordingly (Fig 1 blue rectangles). The final image

on the display is generated on-the-fly by applying the operators to

the visible portion of the base image. Note that the visible portion

of the image can be quickly retrieved from the image repository

(tile-based, multi-resolution image data hierarchy), but the editing

is done on-the-fly on a currently displayed screen-sized image.

Subdivision of the Image Domain A naive approach to apply

editing operators to the current viewing region is finding all the intersected

operator bounding boxes with the viewing bounding box

and apply them in a temporal order (i.e., the order of the creation

of operators). One drawback of this approach is that the computation

time increases linearly as the number of overlapped operators

increases. However, our proposed system can optimize the process

by grouping multiple operators to a single operator, we call it operator

reduction. The requirement for the operator reduction is that

the location and size of the operators should be identical, which is

not feasible in practice. To fulfill the requirement for the operator

reduction, we propose a method that subdivides the image domain.

The main idea of this approach is that instead of storing a bounding

box for an editing operator explicitly, we assign the operator to a

subset of the subdivision of the image domain. In this setup, the

input domain is composed of a set of non-overlapping 2D bounding

boxes where each box manages an operator list to keep track of

editing operations applied to the corresponding region.

Reduction of Editing Operators As discussed in the previous

section, multiple operators can be assigned to a single bounding

box. For a certain class of operators, a set of successive operations

can be combined and expressed as a single operation. A simple example

is the paint ***sh. A paint ***sh operator blends the paint

color with the background color using some weight factors. When

two paint ***sh strokes are overlapped, we can convert two paint

***sh operators into a single paint ***sh by creating a new paint

***sh with the blended color. For complicated operators, we convert

the operator to an approximated linear operator for speeding

up. For example, the Poisson blending, we first compute the solution

of Poisson equation solver, and then convert the blended image

to the base (original) image and the detail image. That means, if

the user changes zoom levels or view points, the Poisson blending

operator does not need to re-calculate the solution but add the detail

map to the currently visible image.

GPU Acceleration of Editing Operators In addition to the operation

reduction, each editing operator can be further accelerated

using the GPU. Most editing operators we implemented are GPUfriendly

because pixel values can be calculated in parallel without

accessing their neighbor pixels. Therefore, we implement each operator

as a shader subroutine, and each bounding box is a GPU kernel

that calls the corresponding shader code. To speed up the Poisson

blending operator, we implement a GPU multi-grid Conjugate-

Gradient Poisson equation solver. We used a compressed sparse

row data s***cture to store sparse matrix, and sparse matrix-vector

multiplication is done by using CUSPARSE and CUBLAS library.

Preliminary Results We tested our prototype editing system on

an Windows PC equipped with an NVIDIA GeForce GTX 480

GPU. We are able to apply up to 50 editing operators at a rate of 30

frames per second on a 1920 x 1200 sized screen independent from

the input image size.

References

JEONG, W.-K., BEYER, J., HADWIGER, M., VAZQUEZ-REINA, A., PFISTER,

H., AND WHITAKER, R. T. 2009. Scalable and interactive segmentation

and visualization of neural processes in EM datasets. IEEE

Trans. Vis. Comp. Graph. 15, 6.

JEONG, W.-K., JOHNSON, M. K., YU, I., KAUTZ, J., PFISTER, H., AND

PARIS, S. 2011. Display-aware image editing. In International Conference

on Computational Photography, 1–8.
分享到: QQ好友和群QQ好友和群 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
转播转播0 分享淘帖0 收藏收藏0 支持支持0 反对反对0
回复

使用道具 举报

tc    

5089

主题

1

听众

33万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

沙发
发表于 2012-4-7 23:24:35 |只看该作者
再看一看,再顶楼主
回复

使用道具 举报

462

主题

1

听众

31万

积分

首席设计师

Rank: 8Rank: 8

纳金币
2
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

板凳
发表于 2012-4-25 23:22:23 |只看该作者
非常感谢,管理员设置了需要对新回复进行审核,您的帖子通过审核后将被显示出来,现在将转入主题
回复

使用道具 举报

1023

主题

3

听众

359

积分

设计实习生

Rank: 2

纳金币
335582
精华
0

最佳新人

地板
发表于 2012-6-3 23:19:45 |只看该作者
其实楼主所说的这些,俺支很少用!
回复

使用道具 举报

   

671

主题

1

听众

3247

积分

中级设计师

Rank: 5Rank: 5

纳金币
324742
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

5#
发表于 2012-6-4 23:26:59 |只看该作者
呵呵,很好,方便罗。
回复

使用道具 举报

   

671

主题

1

听众

3247

积分

中级设计师

Rank: 5Rank: 5

纳金币
324742
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

6#
发表于 2012-6-18 23:20:29 |只看该作者
好`我顶``顶顶
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

7#
发表于 2012-6-29 23:24:39 |只看该作者
已阵亡的 蝶 随 风 舞 说过  偶尔按一下 CTRL A 会发现 世界还有另一面
回复

使用道具 举报

   

671

主题

1

听众

3247

积分

中级设计师

Rank: 5Rank: 5

纳金币
324742
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

8#
发表于 2012-7-24 23:26:52 |只看该作者
佩服,好多阿 ,哈哈
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

9#
发表于 2012-10-9 23:24:11 |只看该作者
其实楼主所说的这些,俺支很少用!
回复

使用道具 举报

1023

主题

3

听众

359

积分

设计实习生

Rank: 2

纳金币
335582
精华
0

最佳新人

10#
发表于 2012-12-9 23:27:43 |只看该作者
我看看就走,你们聊!
回复

使用道具 举报

12 第1页 | 共2 页下一页
返回列表 发新帖
您需要登录后才可以回帖 登录 | 立即注册

手机版|纳金网 ( 闽ICP备2021016425号-2/3

GMT+8, 2024-11-27 17:14 , Processed in 0.095845 second(s), 29 queries .

Powered by Discuz!-创意设计 X2.5

© 2008-2019 Narkii Inc.

回顶部