查看: 1794|回复: 8
打印 上一主题 下一主题

[其它] Face Recognition and Clustering for Home Photos

[复制链接]

797

主题

1

听众

1万

积分

资深设计师

Rank: 7Rank: 7Rank: 7

纳金币
5568
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

跳转到指定楼层
楼主
发表于 2012-1-5 08:55:57 |只看该作者 |倒序浏览
Abstract

In this work, we focus on clustering faces in home photos by face

recognition technologies. We propose two methods to improve the

approach based on a well-known algorithm, local binary patterns.

The adoption of the partial matching metric improves the recognition

accuracy under face pose variations, while the adoption of the

Gabor filter improves the accuracy under noises and various illuminations.

We evaluate our methods on two home photo sets. In both

evaluations, the results show that our methods improve the performance

in accuracy. Compared to baseline LBP methods, in both

evaluations, the results show that our methods improve the performance

in accuracy from 90.4% to 99.5% and from 94.7% to 99.6%

in two home-photo data sets respectively. Even compared to Google

Picasa, the number of clusters where there is only one photo (thus

can not be merged with other clusters, also means not good), our

methods show that the number of “single” clusters reduced by half

can be achieved. Our experience also shows that GPU speedup for

Gabor filter can reach 140 times, and the overall system plus clustering

can thus have 10 times speedup for face recognition.

1 Introduction

As the popularity of digital camera increases over time, when people

go on vacation, they always take many pictures. Sometimes

people may need to find out the pictures of some people, and it takes

long time to check out all the pictures. We want to design a system

so that we can use it to find out who are in the pictures, or who

are always in the same photos. In this case, we are dealing with

photos taken by everyday people, called “Home Photos”. These

home photos perhaps contain a lot of noise or occlusion, varies luminance,

and non-frontal faces, which increase the difficulty of face

recognition.

In this work, we improve a well known face recognition algorithm

based on local binary patterns to be more reliable on recognizing

home photos. Local binary patterns-based (LBP-based) face recognition

has been proven successful and becomes popular since proposed

by T. Ahonen et al. because of its high accuracy and efficiency.

Like other existed works, LBP-based algorithm is originally

designed for recognition under restricted environments. We propose

two methods for LBP-based algorithm to overcome the weakness

in home photos
分享到: QQ好友和群QQ好友和群 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
转播转播0 分享淘帖0 收藏收藏0 支持支持0 反对反对0
回复

使用道具 举报

1023

主题

3

听众

359

积分

设计实习生

Rank: 2

纳金币
335582
精华
0

最佳新人

沙发
发表于 2012-2-16 23:22:30 |只看该作者
很经典,很实用,学习了!
回复

使用道具 举报

   

671

主题

1

听众

3247

积分

中级设计师

Rank: 5Rank: 5

纳金币
324742
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

板凳
发表于 2012-3-19 23:21:03 |只看该作者
爱咋咋地!
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

地板
发表于 2012-4-22 23:25:18 |只看该作者
楼主收集的可真全哦
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

5#
发表于 2012-5-10 23:24:45 |只看该作者
你们都躲开,我来顶
回复

使用道具 举报

462

主题

1

听众

31万

积分

首席设计师

Rank: 8Rank: 8

纳金币
2
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

6#
发表于 2012-6-25 23:20:57 |只看该作者
不错哦,顶一下......
回复

使用道具 举报

   

671

主题

1

听众

3247

积分

中级设计师

Rank: 5Rank: 5

纳金币
324742
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

7#
发表于 2013-2-28 23:24:30 |只看该作者
不错 非常经典  实用
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

8#
发表于 2013-3-8 23:41:38 |只看该作者
其实楼主所说的这些,俺支很少用!
回复

使用道具 举报

5969

主题

1

听众

39万

积分

首席设计师

Rank: 8Rank: 8

纳金币
-1
精华
0

最佳新人 活跃会员 热心会员 灌水之王 突出贡献

9#
发表于 2013-3-19 23:24:38 |只看该作者
呵呵,真得不错哦!!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

手机版|纳金网 ( 闽ICP备2021016425号-2/3

GMT+8, 2024-11-27 19:34 , Processed in 0.096331 second(s), 29 queries .

Powered by Discuz!-创意设计 X2.5

© 2008-2019 Narkii Inc.

回顶部